If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12s-4s^2=0
a = -4; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-4)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-4}=\frac{-24}{-8} =+3 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-4}=\frac{0}{-8} =0 $
| 3(3-2x)=3(5x+1) | | 50=4(x-2)=210 | | 4.9t^2-24.5t-2=2 | | -23=3v+9=11v | | 1/2x+8=0 | | X+x+x=120 | | x+(x•4)=70 | | 0.3(y+4)=0.4(y-3) | | 19-3(4x-6)=5x+7 | | 0.2a=0.6= | | 63=9k;6,7,8 | | -3+2n=-3n+-5n-3 | | 7/4^(k-1)=k | | 6/9x+6=0 | | -5(x+7)=16 | | 0.1=4x+1/x+1 | | 2x2+24=6 | | 4(x÷7)=200 | | y=5(9/5)+6 | | 9×d=81 | | 0=t^2+3t+10 | | 4x+3-5x+6=5+11 | | 2(1-2p)-3(1+p)=-8 | | 2x^2+24=6 | | 4x/7-1/2=-3/4-2x/5 | | k+4.9=5.9 | | 24=3y-12 | | 3(2f-8)=15 | | 5y^2,y=4 | | 1/2(z+3)=1/3(z-7) | | 2(2+n)-4(3-3n)=6 | | 3e-5/2=11 |